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It is proven that the canonical Gibbs measure associated with a gas of vortices 
of intensity ___xf~ converges, in the limit N ~  0% xf~-- .0,  N a ~ c o n s t ,  to a 
Gaussian measure, which is invariant for the two-dimensional Euler equation. 

KEY W O R D S :  Invariant measures for the Euler flow; vortices; Gaussian 
random fields. 

1. I N T R O D U C T I O N  

Invariant measures for the two-dimensional Euler flow have been 
introduced for trying to explain some features of two-dimensional 
stationary homogeneous turbulence. See Ref. 1 for a physical 
understanding of the subject and, more generally, for a review on the 
statistical mechanical approaches to fully developed turbulence. 

At a more rigorous level the study of such invariant measures and 
their connections with analogous problems arising in statistical mechanics 
and in quantum field theory was started by Hopf  (21 and has more recently 
been carried out by several authors. (3 8) 

We review the basic framework of the above references. 
Let us consider the two-dimensional flat torus T =  [ -~r ,  z]2 in which 

an incompressible inviscid fluid is confined. The Euler equation in the vor- 
ticity formalism is 

~3tco + (u-V) co = 0 (1.1) 

curl u = 09, div u = 0 (1.2) 
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where x--* u(x)e N2 and x ~ co(x)e [R are the velocity and the vorticity 
field, respectively. Equations (1.2) are equivalent to 

where 

and 

u(x) = IT K(x, y) co(y) dy (1.3) 

K(x, y ) -  - Vx �9 V(x, y), V • = (8xv -8xl)  (l.4) 

1 exp[ik '  ( x -  y)]  
V(x, y ) -  (2~) 2 ~ k2 (1.5) 

k :~O,k c Z 2 

is the fundamental solution of the Poisson equation in T, which makes 
sense by virtue of the neutrality condition 

f co(x) dx = 0  (1.6) 

Equation (1.6) is a consequence of the periodicity of u and of the cir- 
culation theorem. 

The initial value problem associated with (1.1) and (1.3) has been 
widely investigated and makes sense for initial data coo e L~(T).  Moreover, 
it is well known that any functional of the form 

flH + 7E + ;T O(CO) dx (1.7) 

where fl, y e R and ~b ~ C0(R) and 

/ 4=  1 fT U2(X) dx (energy) (1.8) 
2 

1 
E = -~ fr w2(x) dx (enstrophy) (1.9) 

are first integrals for the Euler flow. 
It is immediately seen that 

fl/4 + 7E = �89 (yl -/~A - 1) co); /~, y > 0  (1.10) 

is a quadratic form generating a Gaussian measure, which is formally 
defined as 

exp [ - � 89  [oSk] 2 (7 + fl/k2)] 
kt~,~,(dco) = ~ 2rc(7 + fi/k2)_ 1 dd) k (1.|1) 

k v ~ O , k ~ Z  2 

where ch k are the Fourier coefficients of co and dd) k = d Re o5 k d Im o5 k. 
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As remarked in Refs. 3-11, the vector field associated with the Euler 
equation is divergenceless (in the space of the Fourier coefficients), so that 
the measure (1.11) is expected to be invariant for the Euler flow. Unfor- 
tunately, it is only "formally" invariant, because the set of all oJeLo~(T)  
has #~,<measure zero, so that the construction of a #~,<almost everywhere 
defined Euler flow is problematic because #~,7 is concentrated on a set of 
distributions for which the initial value problem does not easily make 
sense. Nevertheless, one can construct a (possibly nonunique) one- 
parameter group of unitary operators acting on L2(d~,~),  whose generator 
coincides with the Liouville operator associated with the Euler flow on a 
domain of sufficiently smooth functions. (7's) 

The problem of constructing invariant measures associated with the 
first integrals (1.7) reduces to that of giving sense to the measures 

1 
Norm kt~'v(dc~ exp f ~b(~o) dx (1.12) 

This problem is analogous to that of Euclidean quantum field 
theory (9) with the free covariance ( - A + m )  l(x,  y) replaced by 
(~_/~j-1)-1 (x, y). 

In Section 3 we give heuristic arguments suggesting the impossibility 
of constructing non-Gaussian invariant measures of the form (1.12). 

The Gibbs measures for the vortex model also can be considered as 
invariant measures for the Euler flow. The vortex model is defined through 
the system of ordinary differential equations 

2 i=  ~ K(xi ,  x j ) % ,  ~j= • i = l , . . . , N ,  x i e T  (1.13) 

The flow 

~j 6(x - xj) --, ~ ~j ,~(x- xj(t) ) (1.14) 

can be interpreted as a generalized solution of the Euler flow. (~~ 
The vortex system (1.13) is Hamiltonian with the Hamilton function 

given by 

H=�89 F, ~,~jV(xi, xj) (1.15) 
i ~ j  

and the conjugate variables are proportional to the coordinates of 
xi, i = l  ..... N. 

The canonical Gibbs measure for such a system 

1 
Norm (exp - f i l l )  dx l . . . dx N (1.16) 
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has been proposed by Onsager. (t2) Obviously the measure (1.16) coincides 
with the canonical measure associated with a two-dimensional classical 
Coulomb system. Such a system has been widely investigated from a 
rigorous point of view ~  the existence of the measure (1.16) has been 
established for values/3 < 4g/e 2. 

As pointed out by Kraichnan, (~4) there is a close analogy between the 
measures (1.16) and (1.11). In the present paper we establish a rigorous 
connection between two such measures. 

Before stating precisely our result, we mention that the vortex model 
(as a finite-dimensional dynamical system) is employed as a numerical 
algorithm to simulate the behavior of the (continuous) Euler flow (see 
Ref. 15 and also Refs. 11 and 16 for a more general, but weaker result). 

The basic underlying idea in these approaches is the following. Let 
COo~co t be a solution of Eqs. (1.1) and (1.3) associated with the initial 
profile coo. Approximate co o by 

~Oo(X ) ~ ~ c~j •(x - xj), j = 1,..., N (1.17) 

and evolve the rhs of (1.17) according to the flow (1.14). Then 
Z ~ j 6 ( x - x j ( t ) )  should be (and actually is) close to co, and the error 
vanishes when N--* or. 

Actually this kind of result is obtained by replacing K by K~ in 
Eq. (1.13), where K~ =VIV~ and V~ is a regularization of V smoothing the 
logarithmic divergence when x ~ y. This means that one considers finite 
blobs of vorticity (approximately of diameter e) instead of point vortices. 
Then the limit N ~ ~ is performed simultaneously to the limit e ~ 0 with 
e ~ N -~, 0 < 6 < 1. We finally notice that, due to a possible hyperbolicity of 
the motion, the error at time t can be hardly estimated better than 
N-PC(p )  exp Ct, with p arbitrarily large, C(p) diverging with p. 

Here we prove that a similar limit holds in the framework of statistical 
mechanics. Namely, the Gibbs measure associated with a gas of vortex 
blobs interacting via a two-body interaction V~(x, y), converges, in the 
limit N ~ 0% Ne2---~ const, e--* 0 suitably, to the Gaussian measure (1.11). 
This means that a long-time control of the Euler flow by means of the vor- 
tex dynamics, if lost in terms of individual solutions, can be recovered in 
statistical terms, provided that an equilibrium of the form (1.11) is 
achieved. 

In the next section we establish and prove our main result. The last 
section is devoted to concluding remarks. 
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2. R E S U L T S  A N D  P R O O F S  

We consider a gas of vortices interacting via a two-body interaction 
defined as 

1 e ik(x - -  Y)e-sk2 

E k 2 (2.1) v & ,  y) = (2n) 2 ~ ,2k~o  

thought of as defined on the fields of The canonical Oibbs measures ,u~,~, 
tile form ,m(dx ) = ~ j= 1,N ~j (~(X -- Xj)  dx, have a characteristic function 
given by 

f {exp[i~ -~ ~ fdx~'"dxN 

xexp[--~/2 ~ V~(xi, xj) cq~j l 

where o)(fj =Y~j~ ~,N aJJ'(x/)' f i s  any continuous real function, Z~,~ is the 
partition function, and a > 0. 

We define the space 

f2= l-I f2k, s (2.3) 
k ~  2 

of the Fourier coefficients of the fields c~ equipped with the product 
topology. Then ~v /~,~ can be interpreted as a family of Borel probability 
measures on f2. 

We find it convenient to rewrite the characteristic functionals (2.2) as 

N , f d ~ , i . . d x ~  Iza,o(expi~ - j (2g) 2N jdv(cq)'"dv(c~N) 

x ~ (~  ccj=O) exp [-fl/2 ~ o~,os.V~(&, xi) 
i ~ j  

+i Z ~;f(xj)] 
j ~ I , N  

(2,4) 

where 

and { ( Z a j = 0 )  is the indicator of the set { c o ] ~ s = 0  }. 

(2.5) 
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Furthermore, liB, ~ is a Borel probability measure on 12 and 

1 tfk[ ~-Sy + fi) /~e,,(exp/co(f))= exp ( -  2~#o " 2  k2 

The main result of this paper is the following. 

(2.6) 

T h e o r e m .  The sequence ]~N converges weakly in the limit N--+ co 
fl,a 

to I*~,7 if a = (2~)2/7N, e = N -a, for some 5 ~ (0, y/2~zfl). 

Proof. First we prove the convergence of the corresponding charac- 
teristic functionals. 

Let ~b(x) be the Gaussian random field with covariance given by fiV~. 
Then, denoting by E~ the expectation with respect to the distribution of ~, 
we have 

exp -fi/2 y, e,c~jV~(x~,xj ) =E~ expi ej~b(xj) (2.7) 
i , j = l  j = l  

Therefore, for f eCo(T), the characteristic functional of N /~,o can be 
written as 

f dxl " '  dXN 
/~,~(exp ico(f))= (Z~,~)-1 E~ --(j[~iSV f dL*(~l,..., aN) 

x e x p [ i  ~ o~jP(f+O)(xj)]} (2.8) 

where dr*(%,..., aN) is the normalized probability measure on { - x / 7 ,  
+ x / a }  N with the constraint ~ i= l ,Ne~=0 (which imposes that N be an 
even integer), 

(2rc)2 N j d v * ( ~  ..... C~u)exp[i ~ P~b(xj)~j]} (2.9) 
j = ! , N  

and 

Pf(x) = f(x) - fr f(x) dx/(2= )2 (2.10) 

Since 

E' 1 f dx/(2zt) 2 exp[iejP(f+ ~b)(xj)] = exp - 2 ~  liP(f+ ~b)lk 2 + 0(1/N3/2) 
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we extract the leading term in the rhs of Eq. (2.8) by using the expansion 

exp l i j=~x~JP(f  +O)(xJ) 1 

1 Up(f + ~b)J]22] = exp 1 - 2 7  

+ exp [ ictj P ( f  + ~)(Xi) ] 
k=l 1 

[ ,  ]} x ~exp[&kP(f+ ~b)(x~)] - exp - 2 ~  l iP( f+  ~)11~ 

x 1~ exp .2~l!/'(f+~)ll~ (2.11) 
j = k +  : 

We get 

1 

where 

A(fN)=E~{fdxl'"dXNfdv*(cq-(fs ..... O~N)~lf(N)} (2.13) 

and ~f(N) is the sum on the rhs of Eq. (2.11). 
By Eq. (2.12) we get 

E ,{exp[- (1 /27)  r iP( f+  ~b)]l ~] } 
#~(exp  ico(f) ) = 

E~{exp[ -(1/27)  IIP(~b)ll~] } 

1 
• 

I + A(0, X)/E~{exp[ -(1/27)  I[P(~b)!i 2] } 

A ( f  N)/E~{exp[ - (1/27) ![ P(~b)fl 2] } 
+ (2.14) 

1 + A(0, N)/E~{exp [ -(1/27)  I]P(~b)][ 22 ] } 

By means of explicit calculations of Gaussian integrals we obtain 

E~{exp[ - (1/27)  ![P(f + ~b)ll 2 ] } 
E~{exp[ - (1/27) JlP(~b)r] 2] } 

(exp ek 2) k 2 . . . . .  
= exp l-�89 k~o l f kI 2 y k ~ e x p ~  ~ fl ) l t  z't ~ ' 

Therefore we prove the theorem once we prove that, for all f 

A ( f  N) 
E~{exp E- (1/27) IIP(#)II I] } (2.16) 

vanishes in the limit N--+ oo, a ~ O, a = (2rc)2/yN, e = N -a, with 
6 G (0, 7/2fiTr). 
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We have 

f 1 
= exp t -  ~ ~olOg ( 1 -} fi exp(~-~k2)~Tk 5 / 

exp(-ek2)) 
> e x p ( - ~ T k ~  ~ -~ }>const  xe ~/~ (2.17) 

Let us call ~k(N) a generic term in tpf(N). Performing the scaling 
:~j~aj/(TN) 1/2 simultaneously on all variables (al ..... aN), we obtain, 
denoting by d~N(a~,..., aN) the transformed measure, 

E~ -(i.~]~ dv~(oq ,..., aN) ~k(N) 

(fdx,'dXN_(2ni ~ -  f = Eg J d ~ ( a l , . . .  , aN) 

k--1 
x [~ exp[iaj(TN) '/2 P(f+ ~b)(X/)] 

i 1 

x{exp[iak/(TN)l/ZP(f+~)(Xk)]--exp[--2@HP(f +O)H~]} 

L' ]) x H exp -2~]kP( f+4 ' ) l l~  (2.18) 
j = k +  1 

By definition of P(f+ 0), 
l" j dxk iak/(?N) '/2 P(f+ ~b)(xk) = 0 (2.19) 

On the other hand, using a 2 = 1, we have 
1 f dx~ a2/(27 N) P(f+ ~)(Xk) 2 = 2 ~  [[P(f + ~b)[I2 (2rc)2 (2.20) 

Therefore the rhs of Eq. (2.18) is equal to 

I f  : dg*(cq ..... as) k--lFl d x ,  . . .  d x ~  f . �9 ,,~ exp[taj(7N) P(f+ ~b)(x~)] 
j = l  

x ( { exp[ iak / ( yN)  1/2 P(f+ ~ ) ( x , ) ]  - 1 - i a j ( T N )  l/a e ( f +  e~)(x,) 

+ a2/2~/N[P(f + ~ ) ( x k ) ]  2 } 

-{exp f -2@ l[P(f + O)ll2]- l + 2@ llP(f + O)l'2} ) 

I' ?1 x [ I  exp - IIP(f+~b)l[ 2 (2.21) 
j = k + l  2 ~  



Invariant Measures for 2D Euler F low 737 

Therefore by the Taylor formula we get 

~< 3! (7N) 3/2 Ee [ J  (2n) 2 I N ( f +  ~b)(x~)l 3 

1 
+ ~ E~{ IlP(f + ~b)ll 4 } (2.22) 

Using the Holder inequality, we get that the rhs of Eq. (2.22) does not 
exceed 

1 1 
[E~{ HP(f+ ~)114}] 3/4 - ~ - ~  E~{ IFP(f+ ~b)ll44} (2.23) 

3! (7N) 3/2 ~tTJV;- 

Thus, 

Furthermore, 

IA(f, N)[ <~constxN/(NT) 3/2 [ V~(0, 0)2+ I]fl144] (2.24) 

V~(0, 0) ~< - cons t  x log e = const x ~ log N (2.25) 

Combining (2.24), (2.25), and (2.17), we obtain 

A(f, N) (log N) 2 
~< const - -  N ~#~/~ (2.26) 

E~{exp[-(1/27)  rlP(~b)]l~] } N 1/2 

It remains to show that the convergence of the characteristic 
functionals implies weak convergence. We observe that #2 is metrizable 
with metric function given, for instance, by 

d(co, co')= ~ e k2min{1, [oSk--ch21 } 
k r  

(2.27) 

Furthermore, the set of all continuous bounded cylindrical functions, 
i.e., the functions depending only on a finite number of o5 k, is dense, with 
respect to the uniform topology, in the set of all continuous bounded 
functions. Therefore we need to prove only the weak convergence, for any 
finite A c Z  '2, of ~flN~ #2 A to ##,y [g?A, where f2A=]-Ik~As ~. This 
immediately follows since, in finite-dimensional spaces, the convergence of 
the characteristic functions to the characteristic function of a given measure 
implies weak convergence. 

822/46/3-4-20 
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3. C O N C L U D I N G  R E M A R K S  

It is obviously true that the results of this paper are valid for more 
general situations than those explicitly treated. For example, more general 
measures v for which v(c~ 2) = (2~z)2/yN and v(c0)= const x N -2, different 
cutoffs, or more general bounded domains (in which the Fourier coef- 
ficients are replaced by the projections on the eigenfunctions of the Laplace 
operators 16'8)) are allowed. 

Furthermore, the theorem in Section 2 can be proved by replacing #~,oN 
by #}.~, the grand canonical Gibbs measure with activity z. In this case the 
conditions are z ~ Go, a ~ 0, z~r = (2=)2/7. We omit the details. 

The results of the above section show that, among the measures 
generated by the first integrals (1.7), the Gaussian ones play a special role. 
An additional comment to this is the following. The Gaussian measures 
generated by a linear combination of the energy and the enstrophy enjoy 
the property of being invariant with respect to the finite-dimensional 
dynamics obtained by projecting the Euler equation on a finite, symmetric 
subset of the k space 7/2. Other non-Gaussian measures associated with a 
~b r  (if they exist) cannot have this feature. Considering that the small 
wave numbers are made small by the viscosity, this property seems to be 
relevant from a physical point of view. In any case, heuristic arguments 
based on the renormalization group analysis of the measures (1.2) strongly 
suggest the impossibility of perturbing the measure/~,~ by a nonquadratic 
potential. 

Notice that the covariance of a "free" field co distributed via #1,1 has 
covariance whose Fourier transform is 

k 2 ,~-1 k2 k2z(k) (3.1) 
(~(k) - - = 1  + k 2 ~v~limoo ~=0 ~ l + k 2  [Z(2 " - l k ) - ) ( ( 2  "k)]-t- 1 +k----- ~ 

where z(k) is a C ~ function of compact support, such that Z(0) = 1. 
Then the "cutoff" field co(N)(x) of covariance C(NI(x) can be expanded 

as a sum of independent, smooth Gaussian fields, whose covariances are 
given by the different addends on the rhs of (3.1): 

N 1 
(J)(N)(x) = ~ (2)n(X) Jr- (f-)(X) ( 3 . 2 )  

n--O 

Let us notice that the covariances Cn(x) of co,,(x) satisfy the scaling 
relation (d= 2): 

C.(x) = 2ndCn(2~x ) (3.3) 
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where 

k 2 
C.(x) = (2zr) 2 ~ 2-2" + k 2 [Z(2 l k ) -  x(k)] e ikx (3.4) 

ke0 

is essentially independent of n. 
The usual way of giving a meaning to the measure (1.12) is to study 

the limit (see Ref. 17 for a recent review on the subject) 

l i m l  P(&o(N))exp I f  ~b(e) (m) dx I ,3.5) 

By (3.3) and (3.4) the properties of the above limit should not change 
in an essential way if the field ~o(N)(x) is substituted by its "hierarchical" 
approximation 

N - - l  

(0(N)(x) = ~ 2"Z~(x,,) (3.6) 
n = 0  

where A(x, n) is the tessera containing x, belonging to a fixed pavement Q, 
of T 2, consisting of squares of side 2-'(2u). The variables z~ are indepen- 
dent normal variables. 

Let us define normalized variables 

' N - - I  

where A ~ QN and x is any point in A. Equations (3.6) and (3.7) imply that 

0(~ N) ~ ' ~  1'/'(u- l) (3.8) ~ T  ZA Ay 2"t'~ 

whereA~QN, 2 e Q u _ l ,  a n d 2 ~ A .  
Then we have 

= f ~ P(dO~ ~)) exp[V(0~u))] 
A~QN 

= f [] P(dO(~ N ~))exp[TV(O(4N-1))] 
AEQN-I 

= f I~ P(dO(~N-~))exp[T~V(O(~N-k))] (3.9) 
A~QA~ k 



740 Benfatto,  Picco, and Puivirenti 

which defines the "effective potential" TkV on the scale 2 k and the renor- 
malization group transformation T. We have, by (3.8), 

TV(tp) = 4 log f exp[V(x/-3/2z + �89 exp(-z2/2)  dz/(2~) l''z (3.10) 

If V(x)=.4(N)H2n(x) [where H2,,(x) is the Hermite polynomial of 
order n], we have, at the first order in )~, 

TV(q,) = ~ ;~(~)H2,,(~, ) (3.11 ) 

This suggest that the contribution of the nonquadratic part of TkV(x) 
goes to zero as k ~ ve if ~(m) is chosen small enough (independent of the 
cutoff N). This situation is analogous to that of the ~4 quantum field a 
theory with d >  4, where it is generally believed that it is impossible to 
obtain a nontrivial limit when N--* oe. (is) 

Finally, we discuss the possibility of obtaining the results of the 
theorem in Section 2 without making use of any regularization of V(x, y). 

Since J-~ = 7/(2rc) 2] 

f 

for any N large enough (so that ]~/~N<4~z; see Ref. 13), the limit ~--*0 is 
meaningful. Then one could hope that it is possible to control the limit 
N ~  oo uniformly in e by using more powerful techniques for the 
estimation of the two quantities in Eq. (2.16). However, this does not seem 
to be the case. 

Let us consider, for example, the first term in Eq. (2.16). We can write 

A(0, N)/E~{exp(-  1/27 IIP~II~)} 

= 4(0, N)/E~{exp((~/27) V~(0, 0 ) -  1/27 ILP@/]2)} (3.13) 
where 

A(0, N ) =  E~ ( f  dxl...dxN/(27c)2Xfdv*(o:l ..... ~x) 

x :exp(i~iP(qS)(Xj)): {:exp(ic~kP(~)(xk): 
k = l  1 

- exp[(3/2~N) V~(0, 0 ) -  (�89 } 

x exp[(/~/2~N) V~(0, 0) - (�89 HP(qS)H~] (3.!4) 
/ 1 

:-: being the Wick product. 
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By (2.17) the limit for e --* 0 of the denominator on the rhs of (3.13) 
exists and is greater than zero. Then one is faced with the problem of show- 
ing that I/I(0, N)J-~0  for N--* 0% uniformly in e. It is clear that, if this is 
true, one should also be able to prove that, uniformly in g, 

Zp,~/~N= E~ { f dx~ " " dXN/(2~)2N f dv*(~ ,..., ~N) 

x 1-[ :exp(i~jP(q~)(xfl): <<. c(N) (3.15) 
j =  i 

with c(N) a slowly growing function of N. 
One can easily show that the bound (3.15) is true iff the analogous 

bound is true for a Yukawa gas of particles of charges + 1/(~N) 1/2 in a 
fixed volume A with IAI = 1. Then one can try to use the results of Ref. 19 
through the obvious identity 

2~.~ = dU/d2UZ~,~(2)l~. = 0 (3.16) 

where 2~,~ and 2B,~(2) are, respectively, the canonical and the grand 
canonical partition functions of the Yukawa gas. 

In Ref. 19 it is shown that 

log 2~,~()~)~< t2t + ~ (c 12t)" (fla) n-1 (3.17) 

for a suitable constant c. Then, by the Cauchy formula 

R n = l  

which implies 

2 ~'l/~N <~ N' inf exp [ R + cR ~ ( cflR/TN)nl/ RU (3.19) 

,~ cN(N!/NN) e N ~ gx 

for a suitable g > 1. 
The bound of 2e,~ obtained in Ref. 13 leads to an even worse estimate. 
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